centered image

centered image

Physicians Perform World’s First Robotic Surgery to Remove Kidney Cancer Extending Into the Heart

Discussion in 'General Surgery' started by Dr.Scorpiowoman, Apr 19, 2017.

  1. Dr.Scorpiowoman

    Dr.Scorpiowoman Golden Member

    Joined:
    May 23, 2016
    Messages:
    9,028
    Likes Received:
    414
    Trophy Points:
    13,075
    Gender:
    Female
    Practicing medicine in:
    Egypt

    [​IMG]

    Physicians Perform World’s First Robotic Surgery to Remove Kidney Cancer Extending Into the Heart, Saving Patient From Risk of Sudden Cardiac Death

    The 10-hour procedure redefines surgical limits, combining cutting-edge robotic expertise with top-notch, multi-disciplinary collaboration.

    [​IMG]


    Mark Cunningham, MD, helped decrease the patient's recovery time by using minimally invasive surgical techniques.
    [​IMG]


    The surgical team used 3-D animation to properly strategize the procedure.

    A surgical team at Keck Medicine of the University of Southern California (USC) has pushed the boundaries of clinical care by performing the first-ever robotic, minimally-invasive surgical removal of a stage IV tumor thrombus, which is when a kidney cancer tumor extends into the heart. The nearly 10-hour procedure required painstaking precision from three renowned surgeons, a critical-care anesthesiologist and a radiologist. In doing so, they reduced the patient’s risk of sudden death from the tumor breaking off into the heart and lungs.

    Typically, the surgery for a stage IV tumor thrombus is both traumatic and risky. It requires major open surgery, wherein the patient’s chest and abdomen are opened completely, while the anesthesiologist monitors the patient and the tumor thrombus closely. The goal is to remove the tumor and thrombus from the inferior vena cava and the heart, while ensuring it does not break. Several quarts of blood are needed for transfusion and patients have a one in 20 chance of expiring during the procedure.

    The use of robotic surgery techniques significantly reduced trauma to the patient and minimized blood loss by more than five-fold. By using small incisions, the patient’s hospital stay was only six days, as opposed to two to three weeks, which is typical after open surgery. Overall recovery time was also reduced significantly. Such multi-disciplinary collaboration lays the groundwork for using advanced technology to build higher standards of patient care, even in the most complex cases.

    “This exciting feat promises to redefine the boundaries of what is surgically possible through skill, collaboration and technology,” said Inderbir S. Gill, MD, distinguished professor of urology, founding executive director of the USC Institute of Urology and the associate dean of clinical innovation at the Keck School of Medicine of USC. Gill led the multidisciplinary team that performed the surgery. “Our hope is that we can now propel the field at large to turn such futuristic robotic surgery into our present standard-of-care.”

    Physicians at Keck Medicine are accustomed to providing highly specialized care. As a tertiary and quarternary care medical center, Keck Medicine accepts a high volume of complex cases. However, because it is an academic medical center with some of the top physician-researchers in the country, Keck Medicine has the collective brainpower, skill-set and resources to tackle such advanced cases.

    Prior to the surgery, Vinay Duddalwar, MD, associate professor of clinical radiology, created three-dimensional animated maps of the patient’s chest and abdomen so that surgeons could pre-plan their entire surgical strategy with extreme, millimeter precision. The procedure began with Namir Katkhouda, MD, PhD, professor of surgery, who performed a surgical maneuver to control blood flow to the patient’s liver. Next, Gill used the latest-generation Xi da Vinci surgical robot to completely dissect the tumor-bearing kidney through small keyhole incisions in the patient’s abdomen to control various blood vessels, which allowed him access around and into the inferior vena cava where the cancer had spread. Then, Mark Cunningham, MD, associate professor of surgery, put the patient on a heart-lung bypass machine to create a bloodless environment for tumor removal. He opened the patient’s heart using a minimally invasive incision through the ribcage. Cunningham and Gill then worked quickly, efficiently and simultaneously from the chest and abdomen to remove the tumor thrombus from the heart and inferior vena cava, respectively, with Cunningham working from the chest downward and Gill working from the abdomen upward. All the while Duraiyah Thangathurai, MD, professor of clinical anesthesiology and chief of critical care medicine, monitored the patient’s organ function, keeping a close eye on the patient’s heart using an esophageal echo probe. If a portion of the tumor were to break off into the heart or lungs, the patient would die instantly.

    “We are proud of our ability to coordinate such complex efforts between the cardiac and urologic surgical teams with skill and dexterity,” said Cunningham. “This was the driver of our success and exactly the standard we strive for across the institution.”

    According to the American Cancer Society, there are approximately 64,000 new cases of kidney cancer diagnosed each year. Only a small fraction of those patients (about 10 percent) have cancer that spreads through the blood vessels without metastasizing to other organs. In a small portion of these patients, the kidney cancer advances all the way up the vena cava into the heart, often rather rapidly. While this is a relatively rare occurrence, this condition could result in sudden death at any time from fragments of the tumor breaking off into the heart and lungs, and surgery is absolutely necessary.

    Keck Medicine of USC has long been a pioneer of advanced surgical techniques. In 2003, surgeons at the CardioVascular Thoracic Institute at Keck Medicine of USC developed minimally-invasive techniques for cardiothoracic surgery involving modifications to the incisions and instruments. In 2015, Gill became the first surgeon to use robotic high intensity focused ultrasound surgical ablation to ablate a kidney tumor. In late 2015, Keck Hospital of USC became the first academic medical center in the country to treat prostate cancer with high-intensity focused ultrasound. Currently, the USC Institute of Urology has one of the world’s highest volumes of advanced robotic surgeries annually and is a premiere worldwide robotic training center.

    Source
     

    Add Reply

Share This Page

<